4.7 Article

The Immunoglobulin-Like Cell Adhesion Molecule hepaCAM Modulates Cell Adhesion and Motility Through Direct Interaction With the Actin Cytoskeleton

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 219, Issue 2, Pages 382-391

Publisher

WILEY
DOI: 10.1002/jcp.21685

Keywords

-

Funding

  1. Biomedical Research Council of Singapore [R-185-000-047-305]
  2. National University of Singapore Academic Research Fund [R-185-000-112-112, R-185-000-169-112]
  3. Singapore Millennium Foundation Postdoctoral Fellowship

Ask authors/readers for more resources

Previously, we reported the identification of a novel immunoglobulin-like cell adhesion molecule hepaCAM that promotes cell-extracellular matrix (ECM) interactions including cell adhesion and motility. Cell-ECM interactions are known to be directed by the actin cytoskeleton. In this study, we examined the association of hepaCAM with the actin cytoskeleton. We found that hepaCAM was partially insoluble in Triton X-100 and colocalized with the actin cytoskeleton on the plasma membrane. Disruption of F-actin decreased the detergent insolubility and disturbed the subcellular localization of hepaCAM. Coimmunoprecipitation and F-actin coseclimentation assays revealed that hepaCAM directly bound to F-actin. In addition, we constructed three N- and C-terminal domain-deleted mutants of hepaCAM to determine the actin-binding region as well as to evaluate the effect of the domains on the biological function of hepaCAM. Detergent solubility assays showed that the cytoplasmic domain of hepaCAM might be required for actin association. However, deletion of either the extracellular or the cytoplasmic domain of hepaCAM abolished actin coprecipitation as well as delayed cell-ECM adhesion and cell motility. The data suggest that an intact hepaCAM protein is critical for establishing a stable physical association with the actin cytoskeleton; and such association is important for modulating hepaCAM-mediated cell adhesion and motility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available