4.7 Article

Lysophosphatidic Acid-Induced ERK Activation and Chemotaxis in MC3T3-E1 Preosteoblasts Are Independent of EGF Receptor Transactivation

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 219, Issue 3, Pages 716-723

Publisher

WILEY
DOI: 10.1002/jcp.21720

Keywords

-

Funding

  1. Laboratory-Directed Research and Development Program at the Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy [DE-AC06-76RLO1830]

Ask authors/readers for more resources

Bone-forming osteoblasts and their progenitors are target cells for the lipid growth factor lysophosphatidic acid (LPA) which is produced by degranulating platelets at sites of tissue injury. LPA is a potent inducer of bone cell chemotaxis, proliferation and survival in vitro, and this lipid factor is an attractive candidate to facilitate preosteoblast migration during skeletal regeneration in vivo. In this study we sought to more clearly define the intracellular signaling pathways mediating the effects of LPA on bone cells. LPA-treated MC3T3-E1 preosteoblastic cells exhibited a bimodal activation of extracellular signal-related kinase (ERK1/2) with maximal phosphorylation at 5 and 60 min. MEK1/2 activation was detected within 2.5 min of LPA exposure and remained elevated for at least an hour. ERK1/2 phosphorylation was not coupled to Ras activation orto LPA-induced elevations in cytosolic Ca2+. While LPA exposure transactivates the EGF receptor in many cell types, LPA-stimulated ERK1/2 activation in MC3T3-E1 cells was unaffected by the inhibition of EGF receptor function. ERK isoforms can function as transcription factors and ERK1/2 rapidly accumulated in the nuclei of LPA-treated cells, a process that was blocked if ERK1/2 phosphorylation was prevented. Blocking ERK1/2 phosphorylation also led to significant decreases in LPA-induced MC3T3-E1 cell chemotaxis, while the inhibition of EGF receptor function had no effect on the stimulation of preosteoblast motility by LPA. Our results identify ERK1/2 activation as a mediator of LPA-stimulated MC3T3-E1 cell migration that may be relevant to preosteoblast motility and gene expression during bone repair in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available