4.6 Article

Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Na(v)1.7

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 119, Issue 12, Pages 9888-9898

Publisher

WILEY
DOI: 10.1002/jcb.27310

Keywords

dorsal root ganglion (DRG) satellite glial cell (SGCs) activation; inflammation; inflammatory pain; miR-146a; Na(v)1.7; X inactivate-specific transcript (XIST)

Ask authors/readers for more resources

Long noncoding RNAs (lncRNA) has been validated to participate in nociception in inflammatory pain, presenting as a potential target against anesthesia. Previous research work confirmed the correlation between lncRNA X inactivate-specific transcript (XIST) and inflammation. However, its role in inflammatory pain is undefined. In animal pain models, voltage-gated sodium channels (VGSCs) reportedly participate in neural excitation. In this study, we observed the high expression of XIST and VGSC 1.7 (Na(v)1.7) in the dorsal root ganglion (DRG) of the complete Freund's adjuvant (CFA)-induced rat inflammatory pain model. Furthermore, XIST inhibition alleviated pain behavior and the activation of DRG satellite glial cells by suppressing glial fibrillary acidic protein (GFAP) expression, as well as inflammatory cytokine levels of interleukin-6 and tumor necrosis factor-alpha. XIST downregulation increased the mechanical pain threshold in an inflammatory pain model. Moreover, the expression of miR-146a was decreased in CFA rats. In vitro, XIST acted as a sponge of miR-146a, which targeted Na(v)1.7 via bioinformatic prediction, luciferase reporter, and pull-down assay. More importantly, activation of the Na(v)1.7 pathway or miR-146 depression both reversed XIST knockdown-inhibited satellite glial cell activation and inflammatory pain in CFA rats. These results suggest that cessation of XIST may ameliorate inflammatory pain by acting as a sponge of miR-146a to inhibit Nav1.7, implying a promising strategy against inflammatory pain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available