4.6 Article

Osteoblast Adhesion Dynamics: A Possible Role for ROS and LMW-PTP

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 115, Issue 6, Pages 1063-1069

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jcb.24691

Keywords

ADHESION; FAK; LMW-PTP; OSTEOBLAST; REDOX; ROS

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq - INFABiC/INCT)
  2. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
  3. Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)

Ask authors/readers for more resources

Reactive oxygen species (ROS) modulate a variety of intracellular events, but their role in osteoblast adhesion and spreading remains unclear. ROS is a very-known physiological modulators of Protein Tyrosine Phosphatases activities, mainly to low molecular weight protein tyrosine phosphatase (LMW-PTP) activity. As this biological mechanism is not clear in osteoblast adhesion, we decided to investigate ROS levels and phosphorylations of FAK and Src, identifying these proteins as potential substrates to LMW-PTP activity. Our results showed that during osteoblast adhesion/spreading (30min and 2h of seeding) the intracellular ROS content (hydrogen peroxide) is finely regulated by an effective anti-oxidant system [catalase and Superoxide Dismutase (SOD) activities were evaluated]. During the first 30min of adhesion, there was an increase in ROS production and a concomitant increase in focal adhesion kinase (FAK) activity after its phosphorylation at Tyrosine 397 (Y-397). Moreover, after 2h there was a decrease in ROS content and FAK phosphorylation. There was no significant change in LMW-PTP expression at 30min or 2h. In order to validate our hypothesis that LMW-PTP is able to control FAK activity by modulating its phosphorylation status, we decided to overexpress and silence LMW-PTP in this context. Our results showed that FAK phosphorylation at Y-397 was increased and decreased in osteoblasts with silenced or overexpressed LMW-PTP, respectively. Together, these data show that ROS modulate FAK phosphorylation by an indirect way, suggesting that a LMW-PTP/FAK supra-molecular complex is involved in transient responses during osteoblast adhesion and spreading. J. Cell. Biochem. 115: 1063-1069, 2014. (c) 2013 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available