4.6 Article

Human umbilical cord Wharton's jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 113, Issue 2, Pages 658-668

Publisher

WILEY
DOI: 10.1002/jcb.23395

Keywords

HEMATOPOIETIC STEM CELL EXPANSION; CONDITIONED MEDIUM; WHARTON's JELLY STEM CELLS

Funding

  1. National University of Singapore [AcRF Tier 1: R-174-000-122-112]

Ask authors/readers for more resources

Bone marrow mesenchymal stromal cells (BMMSCs) have been used as feeder support for the ex vivo expansion of hematopoietic stem cells (HSCs) but have the limitations of painful harvest, morbidity, and risk of infection to the patient. This prompted us to explore the use of human umbilical cord Wharton's jelly MSCs (hWJSCs) and its conditioned medium (hWJSC-CM) for ex vivo expansion of HSCs in allogeneic and autologous settings because hWJSCs can be harvested in abundance painlessly, are proliferative, hypoimmunogenic, and secrete a variety of unique proteins. In the presence of hWJSCs and hWJSC-CM, HSCs put out pseudopodia-like outgrowths and became highly motile. Time lapse imaging showed that the outgrowths helped them to migrate towards and attach to the upper surfaces of hWJSCs and undergo proliferation. After 9 days of culture in the presence of hWJSCs and hWJSC-CM, MTT, and Trypan blue assays showed significant increases in HSC numbers, and FACS analysis generated significantly greater numbers of CD34+ cells compared to controls. hWJSC-CM produced the highest number of colonies (CFU assay) and all six classifications of colony morphology typical of hematopoiesis were observed. Proteomic analysis of hWJSC-CM showed significantly greater levels of interleukins (IL-1a, IL-6, IL-7, and IL-8), SCF, HGF, and ICAM-1 compared to controls suggesting that they may be involved in the HSC multiplication. We propose that cord blood banks freeze autologous hWJSCs and umbilical cord blood (UCB) from the same umbilical cord at the same time for the patient for future ex vivo HSC expansion and cell-based therapies. J. Cell. Biochem. 113: 658668, 2012. (C) 2011 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available