4.6 Article

Crystal Structure of Human Protein Tyrosine Phosphatase SHP-1 in the Open Conformation

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 112, Issue 8, Pages 2062-2071

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jcb.23125

Keywords

PROTEIN TYROSINE PHOSPHATASE; SHP-1; CONFORMATION

Funding

  1. National Institutes of Health [AL45858, HL079441]
  2. Louisiana Governor's Biotechnology Initiative

Ask authors/readers for more resources

SHP-1 belongs to the family of non-receptor protein tyrosine phosphatases (PTPs) and generally acts as a negative regulator in a variety of cellular signaling pathways. Previously, the crystal structures of the tail-truncated SHP-1 and SHP-2 revealed an autoinhibitory conformation. To understand the regulatory mechanism of SHP-1, we have determined the crystal structure of the full-length SHP-1 at 3.1 angstrom. Although the tail was disordered in current structure, the huge conformational rearrangement of the N-SH2 domain and the incorporation of sulfate ions into the ligand-binding site of each domain indicate that the SHP-1 is in the open conformation. The N-SH2 domain in current structure is shifted away from the active site of the PTP domain to the other side of the C-SH2 domain, resulting in exposure of the active site. Meanwhile, the C-SH2 domain is twisted anticlockwise by about 110 degrees. In addition, a set of new interactions between two SH2 domains and between the N-SH2 and the catalytic domains is identified, which could be responsible for the stabilization of SHP-1 in the open conformation. Based on the structural comparison, a model for the activation of SHP-1 is proposed. J. Cell. Biochem. 112: 2062-2071, 2011. (C) 2011 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available