4.7 Article

Decoupling of structural and functional brain connectivity in older adults with white matter hyperintensities

Journal

NEUROIMAGE
Volume 117, Issue -, Pages 222-229

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2015.05.054

Keywords

Functional MRI; Diffusion tensor imaging; Connectivity; Cognition; Aging; White matter hyperintensities

Funding

  1. National Institute on Aging grants [P01 AG036694, P50 AG005134, K01 AG040197]
  2. National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health
  3. NIH Shared Instrumentation Grant Programand/or High-End Instrumentation Grant Program
  4. VIDI Grant from Netherlands Organisation for Scientific Research (NWO) [639.072.411]
  5. [S10 RR023401]
  6. [S10 RR023043]
  7. MRC [MR/K022113/1] Funding Source: UKRI
  8. Medical Research Council [MR/K022113/1] Funding Source: researchfish

Ask authors/readers for more resources

Age-related impairments in the default network (DN) have been related to disruptions in connecting white matter tracts. We hypothesized that the local correlation between DN structural and functional connectivity is negatively affected in the presence of global white matter injury. In 125 clinically normal older adults, we tested whether the relationship between structural connectivity (via diffusion imaging tractography) and functional connectivity (via resting-state functional MRI) of the posterior cingulate cortex (PCC) and medial prefrontal frontal cortex (MPFC) of the DN was altered in the presence of white matter hyperintensities (WMH). A significant correlation was observed between microstructural properties of the cingulum bundle and MPFC-PCC functional connectivity in individuals with low WMH load, but not with high WMH load. No correlation was observed between PCC-MPFC functional connectivity and microstructure of the inferior longitudinal fasciculus, a tract not passing through the PCC or MPFC. Decoupling of connectivity, measured as the absolute difference between structural and functional connectivity, in the high WMH group was related to poorer executive functioning and memory performance. These results suggest that such decoupling may reflect reorganization of functional networks in response to global white matter pathology and may provide an early marker of clinically relevant network alterations. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available