4.7 Article

Ad-hoc and context-dependent adjustments of selective attention in conflict control: An ERP study with visual probes

Journal

NEUROIMAGE
Volume 107, Issue -, Pages 76-84

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2014.11.052

Keywords

Flanker task; Visual evoked potentials (VEP); Cognitive control; Selective attention; N200

Funding

  1. Deutsche Forschungsgemeinschaft [DFG-FOR 778]

Ask authors/readers for more resources

Cognitive conflict control in flanker tasks has often been described using the zoom-lens metaphor of selective attention. However, whether and how selective attention - in terms of suppression and enhancement - operates in this context has remained unclear. To examine the dynamic interplay of selective attention and cognitive control we used electrophysiological measures and presented task-irrelevant visual probe stimuli at foveal, parafoveal, and peripheral display positions. Target-flanker congruency varied either randomly from trial to trial (mixed-block) or block-wise (fixed-block) in order to induce reactive versus proactive control modes, respectively. Three EEG measures were used to capture ad-hoc adjustments within trials as well as effects of context-based predictions: the N1 component of the visual evoked potential (VEP) to probes, the VEP to targets, and the conflict-related midfrontal N2 component. Results from probe-VEPs indicate that enhanced processing of the foveal target rather than suppression of the peripheral flankers supports interference control. In incongruent mixed-block trials VEPs were larger to probes near the targets. In the fixed-blocks probe-VEPs were not modulated, but contrary to the mixed-block the preceding target-related VEP was affected by congruency. Results of the control-related N2 reveal largest amplitudes in the unpredictable context, which did not differentiate for stimulus and response incongruency. In contrast, in the predictable context, N2 amplitudes were reduced overall and differentiated between stimulus and response incongruency. Taken together these results imply that predictability alters interference control by a reconfiguration of stimulus processing. During unpredictable sequences participants adjust their attentional focus dynamically on a trial-by-trial basis as reflected in congruency-dependent probe-VEP-modulation. This reactive control mode also elicits larger N2 amplitudes. In contrast, when task demands are predictable, participants focus selective attention earlier as reflected in the target-related VEPs. This proactive control mode leads to smaller N2 amplitudes and absent probe effects. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available