4.5 Article

Pro-inflammatory phenotype of COPD fibroblasts not compatible with repair in COPD lung

Journal

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
Volume 16, Issue 7, Pages 1522-1532

Publisher

WILEY
DOI: 10.1111/j.1582-4934.2011.01492.x

Keywords

chronic obstructive pulmonary disease; pulmonary fibroblasts; pro-inflammatory phenotype; elastin; versican

Funding

  1. Auckland Medical Research Foundation
  2. University of Auckland Faculty of Medical and Health Sciences Research
  3. National Natural Science Foundation of China [81000013]
  4. Shanghai Leading Academic Discipline Project [B115]

Ask authors/readers for more resources

Chronic obstructive pulmonary disease (COPD) is characterized by loss of elastic fibres from small airways and alveolar walls, with the decrease in elastin increasing with disease severity. It is unclear why there is a lack of repair of elastic fibres. We have examined fibroblasts cultured from lung tissue from subjects with or without COPD to determine if the secretory profile explains lack of tissue repair. In this study, fibroblasts were cultured from lung parenchyma of patients with mild COPD [Global initiative for chronic Obstructive Lung Disease (GOLD) 1, n= 5], moderate to severe COPD (GOLD 23, n= 12) and controls (non-COPD, n= 5). Measurements were made of proliferation, senescence-associated beta-galactosidase-1, mRNA expression of IL-6, IL-8, MMP-1, tropoelastin and versican, and protein levels for IL-6, IL-8, PGE2, tropoelastin, insoluble elastin, and versican. GOLD 23 fibroblasts proliferated more slowly (P < 0.01), had higher levels of senescence-associated beta-galactosidase-1 (P < 0.001) than controls and showed significant increases in mRNA and/or protein for IL-6 (P < 0.05), IL-8 (P < 0.01), MMP-1 (P < 0.05), PGE2 (P < 0.05), versican (P < 0.05) and tropoelastin (P < 0.05). mRNA expression and/or protein levels of tropoelastin (P < 0.01), versican (P < 0.05), IL-6 (P < 0.05) and IL-8 (P < 0.05) were negatively correlated with FEV1% of predicted. Insoluble elastin was not increased. In summary, fibroblasts from moderate to severe COPD subjects display a secretory phenotype with up-regulation of inflammatory molecules including the matrix proteoglycan versican, and increased soluble, but not insoluble, elastin. Versican inhibits assembly of tropoelastin into insoluble elastin and we conclude that the pro-inflammatory phenotype of COPD fibroblasts is not compatible with repair of elastic fibres.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available