4.5 Article

TNF-α induces TGF-β1 expression in lung fibroblasts at the transcriptional level via AP-1 activation

Journal

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
Volume 13, Issue 8B, Pages 1866-1876

Publisher

WILEY
DOI: 10.1111/j.1582-4934.2009.00647.x

Keywords

transforming growth factor-beta(1); tumour necrosis factor-alpha; activator-protein-1; lung fibrosis

Funding

  1. National Institutes of Health [ES06766, HL60532]
  2. Louisiana Cancer Research Consortium grant

Ask authors/readers for more resources

Tumour necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta(1) (TGF-beta(1)) are peptides with multiple biological activities that influence neoplastic, immunologic and fibroproliferative diseases. There are clear interrelationships and overlap between the actions of TNF-alpha and TGF-beta(1) in lung fibrosis; therefore, we postulated that TNF-alpha may play a significant role in regulating TGF-beta(1) expression in lungs. We recently reported that TNF-alpha activates the extracellular regulated kinase (ERK)-specific pathway in fibroblasts resulting in stabilization of TGF-beta(1) mRNA and increased expression of TGF-beta(1). In the current study, we further investigated the molecular mechanisms involved in TNF-alpha regulation of TGF-beta(1) expression. Nuclear run-on assays showed that treatment of Swiss 3T3 fibroblasts with TNF-alpha increased transcription of the TGF-beta(1) gene in an ERK independent manner. Pre-treatment with the activator protein-1 (AP-1) inhibitor curcumin attenuated TNF-alpha induced transcription of the TGF-beta(1) gene. TNF-alpha induced increased levels of c-Jun and C-Fos in the nucleus accompanied by phosphorylation of c-Jun. In electrophoretic mobility shift assays, AP-1 binding to an AP-1 binding site found within the TGF-beta(1) promoter was increased in nuclear extracts from Swiss 3T3 fibroblasts treated with TNF-alpha. Together, these results suggest that TNF-alpha induces expression and DNA binding of AP-1 resulting in increased transcription of the TGF-beta(1) gene. It is essential to know which transcription pathways are activated because of the wide distribution of TNF-alpha and TGF-beta(1), the general lack of effective treatments for fibroproliferative disease and the possibility that targeting the correct transcription factors could be palliative.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available