4.5 Article

Rassf5 and Ndr kinases regulate neuronal polarity through Par3 phosphorylation in a novel pathway

Journal

JOURNAL OF CELL SCIENCE
Volume 127, Issue 16, Pages 3463-3476

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.146696

Keywords

Cell polarity; Axon formation; Ndr kinases; Par

Categories

Funding

  1. Deutsche Forschungsgemeinschaft [PU 102/12-1]
  2. German Academic Exchange Service (DAAD) fellowship
  3. Wellcome Trust Research Career Development fellow at the UCL Cancer Institute [090090/Z/09/Z]

Ask authors/readers for more resources

The morphology and polarized growth of cells depend on pathways that control the asymmetric distribution of regulatory factors. The evolutionarily conserved Ndr kinases play important roles in cell polarity and morphogenesis in yeast and invertebrates but it is unclear whether they perform a similar function in mammalian cells. Here, we analyze the function of mammalian Ndr1 and Ndr2 (also known as STK38 or STK38L, respectively) in the establishment of polarity in neurons. We show that they act downstream of the tumor suppressor Rassf5 and upstream of the polarity protein Par3 (also known as PARD3). Rassf5 and Ndr1 or Ndr2 are required during the polarization of hippocampal neurons to prevent the formation of supernumerary axons. Mechanistically, the Ndr kinases act by phosphorylating Par3 at Ser383 to inhibit its interaction with dynein, thereby polarizing the distribution of Par3 and reinforcing axon specification. Our results identify a novel Rassf5-Ndr-Par3 signaling cascade that regulates the transport of Par3 during the establishment of neuronal polarity. Their role in neuronal polarity suggests that Ndr kinases perform a conserved function as regulators of cell polarity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available