4.5 Article

Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function

Journal

JOURNAL OF CELL SCIENCE
Volume 125, Issue 2, Pages 411-421

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.090639

Keywords

Centromere; CENP-A; Chromatin; Epigenetics; Human artificial chromosome; Kinetochore

Categories

Funding

  1. Wellcome Trust [080458, 073915, 092076]
  2. National Institutes of Health, the National Cancer Institute, the Center for Cancer Research
  3. Ministry of Education, Sports, Culture, Sports, Science and Technology (MEXT) [23247030]
  4. Genome Network
  5. MEXT of Japan [22370063]
  6. Grants-in-Aid for Scientific Research [22370063, 21570196, 23247030] Funding Source: KAKEN

Ask authors/readers for more resources

Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated 'centrochromatin', despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-kappa B p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an similar to 10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an similar to 150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available