4.5 Article

Apico-basal elongation requires a drebrin-E-EB3 complex in columnar human epithelial cells

Journal

JOURNAL OF CELL SCIENCE
Volume 125, Issue 4, Pages 919-931

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.092676

Keywords

Apical differentiation; Actin network; Terminal web; Epithelial morphogenesis; EB3 microtubule binding protein

Categories

Funding

  1. CNRS [UMR 6216]
  2. Universite de la Mediterranee
  3. French Ministry for Education and Research
  4. European Community [HEALTH-F2-2008-200234]
  5. ANR [BLAN07-2-186738]

Ask authors/readers for more resources

Although columnar epithelial cells are known to acquire an elongated shape, the mechanisms involved in this morphological feature have not yet been completely elucidated. Using columnar human intestinal Caco2 cells, it was established here that the levels of drebrin E, an actin-binding protein, increase in the terminal web both in vitro and in vivo during the formation of the apical domain. Drebrin E depletion was found to impair cell compaction and elongation processes in the monolayer without affecting cell polarity or the formation of tight junctions. Decreasing the drebrin E levels disrupted the normal subapical F-actin-myosin-IIB-beta II-spectrin network and the apical accumulation of EB3, a microtubule-plus-end-binding protein. Decreasing the EB3 levels resulted in a similar elongation phenotype to that resulting from depletion of drebrin E, without affecting cell compaction processes or the pattern of distribution of F-actin-myosin-IIB. In addition, EB3, myosin IIB and beta II spectrin were found to form a drebrin-E-dependent complex. Taken together, these data suggest that this complex connects the F-actin and microtubule networks apically during epithelial cell morphogenesis, while drebrin E also contributes to stabilizing the actin-based terminal web.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available