4.5 Article

Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats

Journal

JOURNAL OF CELL SCIENCE
Volume 124, Issue 10, Pages 1703-1714

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.073270

Keywords

CUG-repeat RNA; MS2-GFP; Live-cell microscopy; FRAP; Mbnl1

Categories

Funding

  1. Muscular Dystrophy Association USA (MDA)
  2. Terry Fox foundation of the National Cancer Institute of Canada
  3. Canadian Institute of Health Research [NDS62501]
  4. MDA

Ask authors/readers for more resources

Transcripts containing expanded CNG repeats, which are found in several neuromuscular diseases, are not exported from the nucleus and aggregate as ribonuclear inclusions by an unknown mechanism. Using the MS2-GFP system, which tethers fluorescent proteins to a specific mRNA, we followed the dynamics of single CUG-repeat transcripts and RNA aggregation in living cells. Single transcripts with 145 CUG repeats from the dystrophia myotonica-protein kinase (DMPK) gene had reduced diffusion kinetics compared with transcripts containing only five CUG repeats. Fluorescence recovery after photobleaching (FRAP) experiments showed that CUG-repeat RNAs display a stochastic aggregation behaviour, because individual RNA foci formed at different rates and displayed different recoveries. Spontaneous clustering of CUG-repeat RNAs was also observed, confirming the stochastic aggregation revealed by FRAP. The splicing factor Mbnl1 colocalized with individual CUG-repeat transcripts and its aggregation with RNA foci displayed the same stochastic behaviour as CUG-repeat mRNAs. Moreover, depletion of Mbnl1 by RNAi resulted in decreased aggregation of CUG-repeat transcripts after FRAP, supporting a direct role for Mbnl1 in CUG-rich RNA foci formation. Our data reveal that nuclear CUG-repeat RNA aggregates are labile, constantly forming and disaggregating structures, and that the Mbnl1 splicing factor is directly involved in the aggregation process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available