4.5 Article

Differential altered stability and transcriptional activity of ΔNp63 mutants in distinct ectodermal dysplasias

Journal

JOURNAL OF CELL SCIENCE
Volume 124, Issue 13, Pages 2200-2207

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.079327

Keywords

p63; Skin; Ectodermal dysplasia protein; Stability; Itch

Categories

Funding

  1. EU [LSHB-CT-019067]
  2. Alleanza contro il Cancro [ACC12/6]
  3. MIUR/PRIN [RBIP06LCA9_0023]
  4. AIRC [2008-2010_33-08]
  5. Italian Human ProteomeNet [RBRN07BMCT]
  6. Telethon
  7. Ministero della Salute [RF06-RF07]
  8. MRC [MC_U132670600] Funding Source: UKRI
  9. Medical Research Council [MC_U132670600] Funding Source: researchfish

Ask authors/readers for more resources

Heterozygous mutations of p63, a key transcription factor in epithelial development, are causative in a variety of human ectodermal dysplasia disorders. Although the mutation spectrum of these disorders displays a striking genotype-phenotype association, the molecular basis for this association is only superficially known. Here, we characterize the transcriptional activity and protein stability of Delta Np63 mutants (that is, mutants of a p63 isoform that lacks the N-terminal transactivation domain) that are found in ectrodactyly-ectodermal dysplasia-cleft syndrome (EEC), ankyloblepharon-ectodermal dysplasia-clefting syndrome (AEC) and nonsyndromic split-hand/split-foot malformation (SHFM). DNA-binding and sterile alpha motif (SAM) domain mutants accumulate in the skin of EEC and AEC syndrome patients, respectively, and show extended half lives in vitro. By contrast, C-terminal mutations found in SHFM patients have half-lives similar to that of the wild-type protein. The increased half-life of EEC and AEC mutant proteins was reverted by overexpression of wild-type Delta Np63. Interestingly, the mutant proteins exhibit normal binding to and degradation by the E3 ubiquitin ligase Itch. Finally, EEC and AEC mutant proteins have reduced transcriptional activity on several skin-specific gene promoters, whereas SHFM mutant proteins are transcriptionally active. Our results, therefore, provide evidence for a regulatory feedback mechanism for p63 that links transcriptional activity to regulation of protein homeostasis by an unknown mechanism. Disruption of this regulatory mechanism might contribute to the pathology of p63-related developmental disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available