4.5 Article

The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation

Journal

JOURNAL OF CELL SCIENCE
Volume 123, Issue 10, Pages 1644-1651

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.063222

Keywords

Arabidopsis; Stress; DJ-1

Categories

Funding

  1. Norwegian Research Council
  2. Western Norway Regional Health Authority [911218]
  3. University of Stavanger, Norway
  4. Helse Vest

Ask authors/readers for more resources

Mutations in the DJ-1 gene (also known as PARK7) cause inherited Parkinson's disease, which is characterized by neuronal death. Although DJ-1 is thought to be an antioxidant protein, the underlying mechanism by which loss of DJ-1 function contributes to cell death is unclear. Human DJ-1 and its Arabidopsis thaliana homologue, AtDJ-1a, are evolutionarily conserved proteins, indicating a universal function. To gain further knowledge of the molecular features associated with DJ-1 dysfunction, we have characterized AtDJ-1a. We show that AtDJ-1a levels are responsive to stress treatment and that AtDJ-1a loss of function results in accelerated cell death in aging plants. By contrast, transgenic plants with elevated AtDJ-1a levels have increased protection against environmental stress conditions, such as strong light, H2O2, methyl viologen and copper sulfate. We further identify superoxide dismutase 1 (SOD1) and glutathione peroxidase 2 (GPX2) as interaction partners of both AtDJ-1a and human DJ-1, and show that this interaction results in AtDJ-1a- and DJ-1-mediated cytosolic SOD1 activation in a copper-dependent fashion. Our data have highlighted a conserved molecular mechanism for DJ-1 and revealed a new protein player in the oxidative stress response of plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available