4.5 Article

Kinectin-mediated endoplasmic reticulum dynamics supports focal adhesion growth in the cellular lamella

Journal

JOURNAL OF CELL SCIENCE
Volume 123, Issue 22, Pages 3901-3912

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.069153

Keywords

Kinectin; Focal adhesion; Endoplasmic reticulum; Cell spreading; Migration

Categories

Funding

  1. NRF/MOE (Centre for Mechanobiology)
  2. ARC [R185-000-135-112]
  3. BMRC
  4. A*STAR through the Institute of Bioengineering and Nanotechnology [R185-001-045-305]
  5. Janssen-Cilag [R185-000-182-592]
  6. Singapore-MIT Alliance Computation

Ask authors/readers for more resources

Focal adhesions (FAs) control cell shape and motility, which are important processes that underlie a wide range of physiological functions. FA dynamics is regulated by cytoskeleton, motor proteins and small GTPases. Kinectin is an integral endoplasmic reticulum (ER) membrane protein that extends the ER along microtubules. Here, we investigated the influence of the ER on FA dynamics within the cellular lamella by disrupting the kinectin-kinesin interaction by overexpressing the minimal kinectin-kinesin interaction domain on kinectin in cells. This perturbation resulted in a morphological change to a rounded cell shape and reduced cell spreading and migration. Immunofluorescence and live-cell imaging demonstrated a kinectin-dependent ER extension into the cellular lamella and ER colocalisation with FAs within the cellular lamella. FRAP experiments showed that ER contact with FAs was accompanied with an increase in FA protein recruitment to FAs. Disruption of the kinectin-kinesin interaction caused a reduction in FA protein recruitment to FAs. This suggests that the ER supports FA growth within the cellular lamella. Microtubule targeting to FAs is known to promote adhesion disassembly; however, ER contact increased FA size even in the presence of microtubules. Our results suggest a scenario whereby kinectin-kinesin interaction facilitates ER transport along microtubules to support FA growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available