4.5 Article

Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells

Journal

JOURNAL OF CELL SCIENCE
Volume 123, Issue 6, Pages 972-982

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.061879

Keywords

Ca2+-sensing receptor; Taste transduction; Identified taste cells; Exponential RNA amplification

Categories

Funding

  1. Russian Academy of Sciences
  2. Russian Foundation for Basic Research [08-04-00033, 07-04-01389]
  3. Russian President Program for Young Scientists [MK-1332.2008.4]
  4. Russian Science Support Foundation

Ask authors/readers for more resources

Three types of morphologically and functionally distinct taste cells operate in the mammalian taste bud. We demonstrate here the expression of two G-protein-coupled receptors from the family C, CASR and GPRC6A, in the taste tissue and identify transcripts for both receptors in type I cells, no transcripts in type II cells and only CASR transcripts in type III cells, by using the SMART-PCR RNA amplification method at the level of individual taste cells. Type I taste cells responded to calcimimetic NPS R-568, a stereoselective CASR probe, with Ca2+ transients, whereas type I and type II cells were not specifically responsive. Consistent with these findings, certain amino acids stimulated PLC-dependent Ca2+ signaling in type III cells, but not in type I and type II cells, showing the following order of efficacies: Phe similar to Glu>Arg. Thus, CASR is coupled to Ca2+ mobilization solely in type III cells. CASR was cloned from the circumvallate papilla into a pIRES2-EGFP plasmid and heterologously expressed in HEK-293 cells. The transfection with CASR enabled HEK-293 cells to generate Ca2+ transients in response to the amino acids, of which, Phe was most potent. This observation and some other facts favor CASR as the predominant receptor subtype endowing type III cells with the ability to detect amino acids. Altogether, our results indicate that type III cells can serve a novel chemosensory function by expressing the polymodal receptor CASR. A role for CASR and GPRC6A in physiology of taste cells of the type I remains to be unveiled.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available