4.5 Article

Redundant and differential regulation of multiple licensing factors ensures prevention of re-replication in normal human cells

Journal

JOURNAL OF CELL SCIENCE
Volume 122, Issue 8, Pages 1184-1191

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.041889

Keywords

Cdt1; ORC1; CDC6; DNA replication; Re-replication

Categories

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. JSPS

Ask authors/readers for more resources

When human cells enter S-phase, overlapping differential inhibitory mechanisms downregulate the replication licensing factors ORC1, CDC6 and Cdt1. Such regulation prevents re-replication so that deregulation of any individual factor alone would not be expected to induce overt re-replication. However, this has been challenged by the fact that overexpression of Cdt1 or Cdt1+CDC6 causes re-replication in some cancer cell lines. We thought it important to analyze licensing regulations in human non-cancerous cells that are resistant to Cdt1-induced re-replication and examined whether simultaneous deregulation of these licensing factors induces re-replication in two such cell lines, including human fibroblasts immortalized by telomerase. Individual overexpression of either Cdt1, ORC1 or CDC6 induced no detectable re-replication. However, with Cdt1+ORC1 or Cdt1+CDC6, some re-replication was detectable and coexpression of Cdt1+ORC1+CDC6 synergistically acted to give strong re-replication with increased mini-chromosome maintenance (MCM) loading. Coexpression of ORC1+CDC6 was without effect. These results suggest that, although Cdt1 regulation is the key step, differential regulation of multiple licensing factors ensures prevention of re-replication in normal human cells. Our findings also show for the first time the importance of ORC1 regulation for prevention of re-replication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available