4.5 Article

Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly

Journal

JOURNAL OF CELL SCIENCE
Volume 121, Issue 15, Pages 2540-2554

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.033597

Keywords

barrier-to-autointegration factor; chromatin; emerin; lamin A; nuclear envelope; microtubule

Categories

Ask authors/readers for more resources

Assembly of the nuclear envelope ( NE) in telophase is essential for higher eukaryotic cells to re-establish a functional nucleus. Time-lapse, FRAP and FRET analyses in human cells showed that barrier-to-autointegration factor ( BAF), a DNA-binding protein, assembled first at the distinct `core' region of the telophase chromosome and formed an immobile complex by directly binding with other core-localizing NE proteins, such as lamin A and emerin. Correlative light and electron microscopy after live cell imaging, further showed that BAF formed an electron-dense structure on the chromosome surface of the core, close to spindle microtubules ( MTs) prior to the attachment of precursor NE membranes, suggesting that MTs may mediate core assembly of BAF. Disruption of the spindle MTs consistently abolished BAF accumulation at the core. In addition, RNAi of BAF eliminated the core assembly of lamin A and emerin, caused abnormal cytoplasmic accumulation of precursor nuclear membranes and resulted in a significant delay of NE assembly. These results suggest that the MT-mediated BAF accumulation at the core facilitates NE assembly at the end of mitosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available