4.5 Article

Dynein drives nuclear rotation during forward progression of motile fibroblasts

Journal

JOURNAL OF CELL SCIENCE
Volume 121, Issue 19, Pages 3187-3195

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.033878

Keywords

dynactin; dynein; microtubules; migration

Categories

Funding

  1. NIH [GM068591]
  2. NIH/NIA [T32 AG0025]

Ask authors/readers for more resources

During directed cell migration, the movement of the nucleus is coupled to the forward progression of the cell. The microtubule motor cytoplasmic dynein is required for both cell polarization and cell motility. Here, we investigate the mechanism by which dynein contributes to directed migration. Knockdown of dynein slows protrusion of the leading edge and causes defects in nuclear movements. The velocity of nuclear migration was decreased in dynein knockdown cells, and nuclei were mislocalized to the rear of motile cells. In control cells, we observed that wounding the monolayer stimulated a dramatic induction of nuclear rotations at the wound edge, reaching velocities up to 8.5 degrees/minute. These nuclear rotations were significantly inhibited in dynein knockdown cells. Surprisingly, centrosomes do not rotate in concert with the nucleus; instead, the centrosome remains stably positioned between the nucleus and the leading edge. Together, these results suggest that dynein contributes to migration in two ways: (1) maintaining centrosome centrality by tethering microtubule plus ends at the cortex; and (2) maintaining nuclear centrality by asserting force directly on the nucleus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available