4.5 Article

The GPI-anchored superoxide dismutase SodC is essential for regulating basal Ras activity and for chemotaxis of Dictyostelium discoideum

Journal

JOURNAL OF CELL SCIENCE
Volume 121, Issue 18, Pages 3099-3108

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.030056

Keywords

SOD; Ras; PI3K; PtdIns(3,4,5)P(3); chemotaxis; motility

Categories

Ask authors/readers for more resources

A genetic screen for Dictyostelium mutant displaying high level of constitutive phosphatidylinositol (3,4,5)-trisphosphate led to the finding that the glycosylphosphatidylinositol (GPI)anchored superoxide dismutase SodC regulates small GTPase Ras. Cells that lack SodC exhibited constitutively high levels of active Ras, more membrane localization of GFP-PHcrac, and defects in chemoattractant sensing, cell polarization and motility. These defects of SodC-lacking cells were partially restored by expression of wild-type SodC but not by the catalytically inactive mutant SodC (H245R, H247Q). Furthermore, an inhibition of PI3K activity in SodC-deficient cells by LY294002 only partially restored chemoattractant sensing and cell polarization, consistent with the fact that SodC-deficient cells have aberrantly high level of active Ras, which functions upstream of PI3K. A higher level of active GFP-RasG was observed in SodC-deficient cells, which significantly decreased upon incubation of SodC-deficient cells with the superoxide scavenger XTT. Having constitutively high levels of active Ras proteins and more membrane localization of GFP-PHcrac, SodC-deficient cells exhibited severe defects in chemoattractant sensing, cell polarization and motility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available