4.5 Article

aPKC enables development of zonula adherens by antagonizing centripetal contraction of the circumferential actomyosin cables

Journal

JOURNAL OF CELL SCIENCE
Volume 121, Issue 15, Pages 2481-2492

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.024109

Keywords

PAR; aPKC; actin dynamics; adherens junction; epithelial cells; polarity

Categories

Ask authors/readers for more resources

Atypical protein kinase C ( aPKC) generally plays crucial roles in the establishment of cell polarity in various biological contexts. In mammalian epithelial cells, aPKC essentially works towards the transition of primordial spot-like adherens junctions ( AJs) into continuous belt-like AJs, also called zonula adherens, lined with perijunctional actin belts. To reveal the mechanism underlying this aPKC function, we investigated the functional relationship between aPKC and myosin II, the essential role of which in epithelial-junction development was recently demonstrated. Despite its deleterious effects on junction formation, overexpression of a dominant-negative mutant of aPKC ( aPKC lambda kn) did not interfere with the initial phase of myosin-II activation triggered by the formation of Ca2+-switch-induced cell-cell contacts. Furthermore, cells overexpressing aPKC lambda kn exhibited myosin-II-dependent asymmetric organization of F-actin along the apicobasal axis, suggesting that aPKC contributes to junction development without affecting the centripetal contraction of the circumferential actomyosin cables. Time-lapse analyses using GFP-actin directly revealed that the circumferential actomyosin cables were centrifugally expanded and developed into perijunctional actin belts during epithelial polarization, and that aPKC lambda kn specifically compromised this process. Taken together, we conclude that aPKC is required for antagonizing the myosin-II-driven centripetal contraction of the circumferential actin cables, thereby efficiently coupling the myosin-II activity with junction development and cell polarization. The present results provide novel insights into not only the site of action of aPKC kinase activity but also the role of actomyosin contraction in epithelial polarization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available