4.5 Article

Multiple functions encoded by the N-terminal PAT domain of adipophilin

Journal

JOURNAL OF CELL SCIENCE
Volume 121, Issue 17, Pages 2921-2929

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.026153

Keywords

adipophilin (ADPH, ADFP); TIP47 (M6PRBP1); lipid droplets; proteasome; domain

Categories

Funding

  1. National Institutes of Health [RO1-HD045962, PO1-HD38129]

Ask authors/readers for more resources

Adipophilin (ADPH), a member of the perilipin family of cytoplasmic lipid droplet (CLD)-binding proteins, is crucially dependent on triglyceride synthesis for stability. We have used cell lines expressing full-length or N-terminally modified forms of ADPH to investigate the role of the N-terminus in regulating ADPH stability and interactions with CLD. Full-length ADPH was unstable and could not be detected on CLDs unless cultures were incubated with oleic acid (OA) to stimulate triglyceride synthesis, or were treated with MG132 to block proteasomal degradation. By contrast, ADPH lacking amino acids 1-89 (Delta 2,3 ADPH), or N-terminally GFP-tagged full-length ADPH, was stable in the absence of OA or MG132, as was the closely related protein TIP47. However, none of these proteins localized to CLDs unless OA was added to the culture medium. Furthermore, immunofluorescence analysis showed that TIP47 localization to CLDs was prevented by full-length ADPH, but not by. 2,3 ADPH. These results suggest that the N-terminal region of ADPH mediates proteasomal degradation and access of TIP47 to the CLD surface and possibly contributes to CLD stability. Chimeras of ADPH and TIP47, generated by swapping their N-and C-terminal halves, showed that these properties are specific to ADPH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available