4.5 Article

Essential role of ADF/cofilin for assembly of contractile actin networks in the C-elegans somatic gonad

Journal

JOURNAL OF CELL SCIENCE
Volume 121, Issue 16, Pages 2662-2670

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.034215

Keywords

actin dynamics; severing; contraction; ovulation; myoepithelial cells

Categories

Funding

  1. NIAMS NIH HHS [R01 AR048615-05, R01 AR48615, R01 AR048615-06A1, R01 AR048615] Funding Source: Medline

Ask authors/readers for more resources

The somatic gonad of the nematode Caenorhabditis elegans contains a myoepithelial sheath, which surrounds oocytes and provides contractile forces during ovulation. Contractile apparatuses of the myoepithelial-sheath cells are non-striated and similar to those of smooth muscle. We report the identification of a specific isoform of actin depolymerizing factor (ADF)/cofilin as an essential factor for assembly of contractile actin networks in the gonadal myoepithelial sheath. Two ADF/cofilin isoforms, UNC-60A and UNC-60B, are expressed from the unc-60 gene by alternative splicing. RNA interference of UNC-60A caused disorganization of the actin networks in the myoepithelial sheath. UNC-60B, which is known to function in the body-wall muscle, was not necessary or sufficient for actin organization in the myoepithelial sheath. However, mutant forms of UNC-60B with reduced actin-filament-severing activity rescued the UNC-60A-depletion phenotype. UNC-60A has a much weaker filament-severing activity than UNC-60B, suggesting that an ADF/cofilin with weak severing activity is optimal for assembly of actin networks in the myoepithelial sheath. By contrast, strong actin-filament-severing activity of UNC-60B was required for assembly of striated myofibrils in the body-wall muscle. Our results suggest that an optimal level of actin-filament-severing activity of ADF/cofilin is required for assembly of actin networks in the somatic gonad.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available