4.7 Article

Conserved and divergent features of kinetochores and spindle microtubule ends from five species

Journal

JOURNAL OF CELL BIOLOGY
Volume 200, Issue 4, Pages 459-474

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201209154

Keywords

-

Categories

Funding

  1. National Institutes of Health (NIH) [GM033787]
  2. MCB program of the Russian Academy of Sciences [07]
  3. NIH [GM098389, P41GM103431]

Ask authors/readers for more resources

Interfaces between spindle microtubules and kinetochores were examined in diverse species by electron tomography and image analysis. Overall structures were conserved in a mammal, an alga, a nematode, and two kinds of yeasts; all lacked dense outer plates, and most kinetochore microtubule ends flared into curved protofilaments that were connected to chromatin by slender fibrils. Analyses of curvature on > 8,500 protofilaments showed that all classes of spindle microtubules displayed some flaring protofilaments, including those growing in the anaphase interzone. Curved protofilaments on anaphase kinetochore microtubules were no more flared than their metaphase counterparts, but they were longer. Flaring protofilaments in budding yeasts were linked by fibrils to densities that resembled nucleosomes; these are probably the yeast kinetochores. Analogous densities in fission yeast were larger and less well-defined, but both yeasts showed ring- or partial ring-shaped structures girding their kinetochore microtubules. Flaring protofilaments linked to chromatin are well placed to exert force on chromosomes, assuring stable attachment and reliable anaphase segregation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available