4.7 Article

Bacterial protein translocation requires only one copy of the SecY complex in vivo

Journal

JOURNAL OF CELL BIOLOGY
Volume 198, Issue 5, Pages 881-893

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201205140

Keywords

-

Categories

Funding

  1. National Institutes of Health [GM052586]

Ask authors/readers for more resources

The transport of proteins across the plasma membrane in bacteria requires a channel formed from the SecY complex, which cooperates with either a translating ribosome in cotranslational translocation or the SecA ATPase in post-translational translocation. Whether translocation requires oligomers of the SecY complex is an important but controversial issue: it determines channel size, how the permeation of small molecules is prevented, and how the channel interacts with the ribosome and SecA. Here, we probe in vivo the oligomeric state of SecY by cross-linking, using defined co- and post-translational translocation intermediates in intact Escherichia coli cells. We show that nontranslocating SecY associated transiently through different interaction surfaces with other SecY molecules inside the membrane. These interactions were significantly reduced when a translocating polypeptide inserted into the SecY channel co- or post-translationally. Mutations that abolish the interaction between SecY molecules still supported viability of E. coli. These results show that a single SecY molecule is sufficient for protein translocation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available