4.7 Article

Structural insights into WHAMM-mediated cytoskeletal coordination during membrane remodeling

Journal

JOURNAL OF CELL BIOLOGY
Volume 199, Issue 1, Pages 111-124

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201204010

Keywords

-

Categories

Funding

  1. Smith Family Award for Excellence in Biomedical Research
  2. Leukemia and Lymphoma Society Career Development Fellowship
  3. University of Connecticut Research Foundation

Ask authors/readers for more resources

The microtubule (MT) and actin cytoskeletons drive many essential cellular processes, yet fairly little is known about how their functions are coordinated. One factor that mediates important cross talk between these two systems is WHAMM, a Golgi-associated protein that utilizes MT binding and actin nucleation activities to promote membrane tubulation during intracellular transport. Using cryoelectron microscopy and other biophysical and biochemical approaches, we unveil the underlying mechanisms for how these activities are coordinated. We find that WHAMM bound to the outer surface of MT protofilaments via a novel interaction between its central coiled-coil region and tubulin heterodimers. Upon the assembly of WHAMM onto MTs, its N-terminal membrane-binding domain was exposed at the MT periphery, where it can recruit vesicles and remodel them into tubular structures. In contrast, MT binding masked the C-terminal portion of WHAMM and prevented it from promoting actin nucleation. These results give rise to a model whereby distinct MT-bound and actin-nucleating populations of WHAMM collaborate during membrane tubulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available