4.7 Article

Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair

Journal

JOURNAL OF CELL BIOLOGY
Volume 193, Issue 2, Pages 295-305

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201009074

Keywords

-

Categories

Funding

  1. National Aeronautics and Space Administration [NNX07AP84G]
  2. National Institutes of Health [CA50519, CA120099]
  3. Michael. L. Rosenberg Endowed Scholar Fund
  4. American Cancer Society
  5. American Society of Hematology
  6. Robert A. Welch Foundation
  7. March of Dimes Foundation

Ask authors/readers for more resources

The nonhomologous end-joining (NHEJ) pathway is essential for radioresistance and lymphocyte-specific V(D)J (variable [diversity] joining) recombination. Defects in NHEJ also impair hematopoietic stem cell (HSC) activity with age but do not affect the initial establishment of HSC reserves. In this paper, we report that, in contrast to deoxyribonucleic acid (DNA)-dependent protein kinase catalytic subunit (DNA-PKcs)-null mice, knockin mice with the DNA-PKcs(3A/3A) allele, which codes for three alanine substitutions at the mouse Thr2605 phosphorylation cluster, die prematurely because of congenital bone marrow failure. Impaired proliferation of DNA-PKcs(3A/3A) HSCs is caused by excessive DNA damage and p53-dependent apoptosis. In addition, increased apoptosis in the intestinal crypt and epidermal hyperpigmentation indicate the presence of elevated genotoxic stress and p53 activation. Analysis of embryonic fibroblasts further reveals that DNA-PKcs(3A/3A) cells are hypersensitive to DNA cross-linking agents and are defective in both homologous recombination and the Fanconi anemia DNA damage response pathways. We conclude that phosphorylation of DNA-PKcs is essential for the normal activation of multiple DNA repair pathways, which in turn is critical for the maintenance of diverse populations of tissue stem cells in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available