4.7 Article

Regulation of the autophagy protein LC3 by phosphorylation

Journal

JOURNAL OF CELL BIOLOGY
Volume 190, Issue 4, Pages 533-539

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201002108

Keywords

-

Categories

Funding

  1. National Institutes of Health [AG026389, DC009120, NS064728, NS065789, RR024153]
  2. American Federation for Aging Research/Ellison Medical Foundation

Ask authors/readers for more resources

Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease-associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl-cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available