4.8 Article

Mechanisms of selective cleavage of C-O bonds in di-aryl ethers in aqueous phase

Journal

JOURNAL OF CATALYSIS
Volume 309, Issue -, Pages 280-290

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2013.09.012

Keywords

Lignin-derived ethers; DFT calculation; Selective C-O cleavage; Aqueous phase reaction

Funding

  1. graduate school (Faculty Graduate Center of Chemistry) of the Technische Universitat Munchen and the Elitenetzwerk Bayern (graduate school NanoCat)
  2. US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences

Ask authors/readers for more resources

A route for cleaving the C-O aryl ether bonds of p-substituted H-, CH3-, and OH- diphenyl ethers has been explored over Ni/SiO2 catalyst at very mild conditions (393 K, 0.6 MPa). The C-O bond of diphenyl ether is cleaved by parallel hydrogenolysis and hydrolysis (hydrogenolysis combined with HO* addition) on Ni. The rates as a function of Hy pressure from 0 to 10 MPa indicate that the rate-determining step is the C-O bond cleavage on Ni surface. H* atoms compete with the organic reactant for adsorption leading to a maximum in the rate with increasing Hy pressure. In contrast to diphenyl ether, hydrogenolysis is the exclusive route for cleaving a C-O bond of di-p-tolyl ether to form p-cresol and toluene. 4,4'-Dihydroxydiphenyl ether undergoes sequential surface hydrogenolysis, first to phenol and OC6H4OH* (adsorbed), which is then cleaved to phenol (C6H4OH* with added H*) and H2O (O* with two added H*) in a second step. Density function theory supports the operation of this pathway. Notably, addition of H* to OC6H4- OH* is less faliorable than a further hydrogenolytic C-O bond cleavage. The TOFs of three diaryl ethers with Ni/SiO2 in water follow the order 4,4'-dihydroxydiphenyl ether (69 mol mol(Ni surf)(-1) h(-1)) > diphenyl ether (26 mol mol(Ni surf)(-1) h(-1)) > di-p-tolyl ether (1.3 mol mol(Ni surf)(-1) h(-1)), in line with the increasing apparent activation energies, ranging from 4,4'-dihydroxydiphenyl et er (93 kJ mo1-1)< diphenyl ether (98 kJ mo1-1)< di-p-tolyl ether (105 kJ mol(-1)). (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available