4.2 Review

Adenosine Receptor-Mediated Cardioprotection: Are All 4 Subtypes Required or Redundant?

Journal

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1074248410396877

Keywords

adenosine receptors; ischemia; reperfusion; cardioprotection; signal transduction

Funding

  1. National Institutes of Health, National Heart, Lung, and Blood Institute [HL-066132]

Ask authors/readers for more resources

Adenosine is a purine nucleoside, which is produced primarily through the metabolism of adenosine triphosphate (ATP), therefore its levels increase during stressful situations when ATP utilization increases. Adenosine exerts potent cardioprotective effects on the ischemic/reperfused heart, reducing reversible and irreversible myocardial injury. Adenosine receptors (ARs) are G-protein-coupled receptors, and 4 subtypes exist-A(1), A(2A), A(2B), and A(3), all of which have been shown to be cardioprotective. Adenosine receptors are expressed on multiple cardiac cells, including fibroblasts, endothelial cells, smooth muscle cells, and myocytes. Activation of both A(1) and A(3) receptors prior to ischemia has been shown in multiple experimental models to reduce ischemia/reperfusion-induced cardiac injury. Additionally, activation of the A(2A) receptor at the onset of reperfusion has been shown to reduce injury. Most recently, there is evidence that the A(2B) receptor has cardioprotective effects upon its activation. However, controversy remains regarding the precise timing of activation of these receptors required to induce cardioprotection, as well as their involvement in ischemic preconditioning and postconditioning. Adenosine receptors have been suggested to reduce cell death through actions at the mitochondrial ATP-dependent potassium (K-ATP) channel, as well as protein kinase C and mitogen-activated protein kinase (MAPK) signaling. Additionally, the ability of ARs to interact has been documented, and several recent reports suggest that these interactions play a role in AR-mediated cardioprotection. This review summarizes the current knowledge of the cardioprotective effects of each AR subtype, as well as the proposed mechanisms of AR cardioprotection. Additionally, the role of AR interactions in cardioprotection is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available