4.2 Article

Mitofusin 2 Inhibits Angiotensin II-Induced Myocardial Hypertrophy

Journal

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1074248410385683

Keywords

cardiac remodeling; myocyte hypertrophy; mitofusin 2

Funding

  1. China national high-tech research and development plan 863 project [2008AA02Z441]
  2. Ministry of Education of China [20060001143]

Ask authors/readers for more resources

Background and Objectives: Myocardial hypertrophy is a common clinical finding leading to heart failure and sudden death. Mitofusin 2 (Mfn2), a hyperplasia suppressor protein, is downregulated in hypertrophic heart. This study examined the role of Mfn2 in myocardial hypertrophy and its potential signal pathway. Methods and Results: In in vitro studies, neonatal cardiac myocytes were isolated and cultured. Incubation of cultured cardiomycytes with angiotensin II (Ang II) inhibited gene expression of Mfn2; induced cell hypertrophy and protein synthesis; and activated protein kinase Akt. Pretreatment of cells with AdMfn2-a replication-deficient adenoviral vector encoding rat Mfn2 gene-upregulated Mfn2 expression and subsequently attenuated Ang II-induced cell hypertrophy; protein synthesis; and Akt activation. In in vivo studies, direct gene delivery of AdMfn2 into myocardium decreased the infusion of Ang II-induced atrial natriuretic factor (ANF, a hypertrophic marker) expression and cardiomyocyte cross-sectional area. Consistently, upregulation of Mfn2 in myocardium decreased the thicknesses of anterior and posterior walls of left ventricle (LV) and the ratio of LV mass/body weight in Ang II-treated rats. Of note, AdGFP (control for AdMfn2) did not affect the effects of Ang II in vitro or in vivo. Conclusions: Upregulation of Mfn2 inhibits Ang II-induced myocardial hypertrophy. In this process, inhibition of Akt activation seems to play a significant role. These findings indicate Mfn2 is a critical protein in modulating myocyte hypertrophy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available