4.4 Article Proceedings Paper

Caspase Inhibition Modulates Left Ventricular Remodeling Following Myocardial Infarction Through Cellular and Extracellular Mechanisms

Journal

JOURNAL OF CARDIOVASCULAR PHARMACOLOGY
Volume 55, Issue 4, Pages 408-416

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/FJC.0b013e3181d4ca66

Keywords

myocardial infarction; remodeling; caspase inhibition; left ventricular

Funding

  1. NHLBI NIH HHS [R01 HL059165, R01 HL057952, R01 HL059165-12, T32 HL007260, HL-87134, HL-07260, HL-81692, R01 HL057952-12] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL057952, T32HL007260, R01HL059165] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Background: Myocyte death occurs by necrosis and caspase-mediated apoptosis in myocardial infarction (MI). In vitro studies suggest caspase activation causes myocardial contractile protein degradation without inducing apoptosis. Thus, caspase activation may evoke left ventricular (LV) remodeling through independent processes post-MI. The effects of caspase activation on LV geometry post-MI remain unclear. This project applied pharmacologic caspase inhibition (CASPI) to a porcine model of MI. Methods and Results: Pigs (34 kg) were instrumented to induce 60 minutes of coronary artery occlusion followed by reperfusion and a 7-day follow-up period. Upon reperfusion, the pigs were randomized to saline (n = 12) or CASPI (n = 10, IDN6734, 6 mg/kg IV, then 6 mg/kg/h for 24 hours). Plasma troponin-I values were reduced with CASPI compared with saline at 24 hours post-MI (133 +/- 15 vs. 189 +/- 20 ng/mL, respectively, P < 0.05). LV end-diastolic area (echocardiography) and interregional length (sonomicrometry) increased from baseline in both groups but were attenuated with CASPI by 40% and 90%, respectively (P < 0.05). Myocyte length was reduced with CASPI compared with saline (128 +/- 3 vs. 141 +/- 4 mm, respectively, P < 0.05). Plasma-free pro-matrix metalloproteinase-2 values increased from baseline with CASPI (27% +/- 6%, P < 0.05) indicative of reduced conversion to active MMP-2. Separate in vitro studies demonstrated that activated caspase species cleaved pro-MMP-2 yielding active MMP-2 forms and that MMP activity was increased in the presence of activated caspase-3. Conclusions: CASPI attenuated regional and global LV remodeling post-MI and altered viable myocyte geometry. Caspases increased MMP activity in vitro, whereas CASPI modified conversion of MMP-2 to the active form in vivo. Taken together, the results of the present study suggest that the elaboration of caspases post-MI likely contribute to LV remodeling through both cellular and extracellular mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available