4.4 Article

Roles of Endothelial Oxidases in Endothelium-derived Hyperpolarizing Factor Responses in Mice

Journal

JOURNAL OF CARDIOVASCULAR PHARMACOLOGY
Volume 52, Issue 6, Pages 510-517

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/FJC.0b013e318190358b

Keywords

hydrogen peroxide; membrane potential; NAD(P)H oxidase; xanthine oxidase; lipoxygenase; mitochondrial electron transport chain

Funding

  1. Japanese Ministry of Education, Science, Sports, and Culture, Tokyo, Japan [15256003, 16209027]
  2. Grants-in-Aid for Scientific Research [15256003] Funding Source: KAKEN

Ask authors/readers for more resources

The endothelium synthesizes and releases several vasodilator substances, including prostacyclin, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF). We have demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an EDHF in animals and humans and that superoxide anions derived from endothelial nitric oxide synthases (NOSs) system are an important precursor for EDHF/H2O2 in mice. There are several intracellular sources of superoxide anions other than NOSs, including NAD(P)H oxidase, xanthine oxidase, lipoxygenase, and mitochondrial electron transport chain, In this study, we examined the possible role of endothelial oxidases other than NOSs in the EDHF-mediated responses. In angiotensin II-infused mice, both EDHF-mediated relaxations and hyperpolarizations to acetylcholine were significantly reduced, nitric oxide-mediated relaxations were rather enhanced, and vascular smooth muscle responses were preserved. Anti hypertensive treatment normalized blood pressure but failed to improve EDHF-mediated responses in those mice. Acute inhibition of endothelial oxidases other than NOSs, including NAD(P)H oxidase, xanthine oxidase, lipoxygenase, or mitochondrial electron transport chain, had no inhibitory effects on EDHF-mediated responses. Furthermore, in p47phox-knockout mice, EDHF-mediated responses were unaltered. These results suggest that endothelial oxidases other than NOSs are not involved in EDHF/H2O2 responses in mice, suggesting a specific link between endothelial NOSs system and EDHF responses under physiological conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available