4.6 Article

Infrared Spectroscopy Indicates Altered Bone Turnover and Remodeling Activity in Renal Osteodystrophy

Journal

JOURNAL OF BONE AND MINERAL RESEARCH
Volume 25, Issue 6, Pages 1360-1366

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/jbmr.10

Keywords

BONE COMPOSITION; HISTOMORPHOMETRY; FOURIER TRANSFORM; INFRARED; RENAL OSTEODYSTROPHY; CARBONATE

Funding

  1. Kuopio University Hospital, Finland [EVO 5231]
  2. Academy of Finland [128863, 127198]
  3. Ministry of Education, Finland (University of Eastern Finland) [5741]
  4. European Commission [BONEQUAL 219980]

Ask authors/readers for more resources

Renal osteodystrophy alters metabolic activity and remodeling rate of bone and also may lead to different bone composition. The objective of this study was to characterize the composition of bone in high-turnover renal osteodystrophy patients by means of Fourier transform infrared spectroscopic imaging (FTIRI). Iliac crest biopsies from healthy bone (n=11) and patients with renal osteodystrophy (ROD, n=11) were used in this study. The ROD samples were from patients with hyperparathyroid disease. By using FTIRI, phosphate-to-amide I ratio (mineral-to-matrix ratio), carbonate-to-phosphate ratio, and carbonate-to-amide I ratio (turnover rate/remodeling activity), as well as the collagen cross-link ratio (collagen maturity), were quantified. Histomorphometric analyses were conducted for comparison. The ROD samples showed significantly lower carbonate-to-phosphate (p<.01) and carbonate-to-amide I (p<.001) ratios. The spatial variation across the trabeculae highlighted a significantly lower degree of mineralization (p<.05) at the edges of the trabeculae in the ROD samples than in normal bone. Statistically significant linear correlations were found between histomorphometric parameters related to bone-remodeling activity and number of bone cells and FTIRI-calculated parameters based on carbonate-to-phosphate and carbonate-to-amide I ratios. Hence the results suggested that FTIRI parameters related to carbonate may be indicative of turnover and remodeling rate of bone. (C) 2010 American Society for Bone and Mineral Research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available