4.3 Article

Transient dynamic actin cytoskeletal change stimulates the osteoblastic differentiation

Journal

JOURNAL OF BONE AND MINERAL METABOLISM
Volume 27, Issue 2, Pages 158-167

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s00774-009-0037-y

Keywords

Actin cytoskeleton; Osteoblastic differentiation; Protein kinase D

Funding

  1. Ministry of Health, Labour and Welfare of Japan
  2. Takeda Science Foundation.

Ask authors/readers for more resources

Dynamic cytoskeletal changes appear to be one of intracellular signals that control cell differentiation. To test this hypothesis, we examined the effects of short-term actin cytoskeletal changes on osteoblastic differentiation. We found an actin polymerization interfering reagent, cytochalasin D, promoted osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells. We also found that these effects were mediated by the protein kinase D (PKD) pathway. Short-term cytochalasin D treatment increased alkaline phosphatase (ALP) activity, osteocalcin (OCN) secretion, and mineralization of the extracellular matrix in MC3T3-E1 cells, with temporary changes in actin cytoskeleton. Furthermore, the disruption of actin cytoskeleton induced phosphorylation of 744/748 serine within the activation loop of PKD in a dose-dependent manner. The protein kinase C (PKC)/PKD inhibitor Go6976 suppressed cytochalasin D-induced acceleration of osteoblastic differentiation, whereas Go6983, a specific inhibitor of conventional PKCs, did not. Involvement of PKD signaling was confirmed by using small interfering RNA to knock down PKD. In addition, another actin polymerization interfering reagent, latrunculin B, also stimulated ALP activity and OCN secretion with PKD activation. On the other hand, the present data suggested that transient dynamic actin cytoskeletal reorganization could be a novel cellular signal that directly stimulated osteoblastic differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available