4.3 Article

Correlation among geometric, densitometric, and mechanical properties in mandible and femur of osteoporotic rats

Journal

JOURNAL OF BONE AND MINERAL METABOLISM
Volume 26, Issue 2, Pages 130-137

Publisher

SPRINGER TOKYO
DOI: 10.1007/s00774-007-0811-7

Keywords

pQCT; geometric and densitometric properties; mechanical strength; mandible and femur bone; rat

Ask authors/readers for more resources

We have previously demonstrated bone loss of the mandible and femur in experimental osteoporotic rats and its prevention by medication, using peripheral quantitative computed tomography (pQCT). In the present study, the mechanical properties of the mandible and femur and the correlation to their geometric and densitometric properties were studied in ovariectomized rats with or without etidronate treatment. Fifty-four Wistar strain SPF female rats, 26 weeks old, were randomly assigned to four groups: (1) Basal group (12 rats, 1.0% Ca diet); (2) Sham group (Sham-operated, 12 rats, 0.1% Ca diet); (3) OVX group (ovariectomized, 15 rats, 0.1% Ca diet); (4) Treated group (OVX + etidronate, 15 rats, 0.1% Ca diet). Total bone mineral density (BMD), cortical BMD, cross-sectional cortical bone area, cross-sectional cortical bone thickness, crosssectional moment of inertia (CSMI), and polar strength index (SSI) of the mandible and femur were measured by pQCT. The failure load of mandible and femur was evaluated by three-point bending. The failure load of both bones was significantly lower in the Sham group compared with the Basal group. The OVX group further had a 8% and 7% decrease in the failure load for mandible and femur, respectively, compared to the Sham group. Treatment with etidronate led to an increase in the failure load compared with the OVX group. The failure load was related to the pQCT-assessed variables, especially with cortical bone area and total BMD. Moreover, the geometric and densitometric properties and failure load in the mandible showed a correlation to those in the femur.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available