4.6 Article

The Biomechanical Relevance of Anterior Rotator Cuff Cable Tears in a Cadaveric Shoulder Model

Journal

JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME
Volume 95A, Issue 20, Pages 1817-1824

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.2106/JBJS.L.00784

Keywords

-

Ask authors/readers for more resources

Background: Anterior tears of the supraspinatus tendon are more likely to be clinically relevant than posterior tears of the supraspinatus. We hypothesized that anterior tears of the supraspinatus tendon involving the rotator cuff cable insertion are associated with greater tear gapping, decreased tendon stiffness, and increased regional tendon strain under physiologic loading conditions compared with equivalently sized tears of the rotator cuff crescent. Methods: Twelve human cadaveric shoulders were randomized to undergo simulation of equivalently sized supraspinatus tears of either the anterior rotator cuff cable (n = 6) or the adjacent rotator cuff crescent (n = 6). For each specimen, the supraspinatus tendon was cyclically loaded from 10 N to 180 N, and a custom three-dimensional optical system was used to track markers on the surface of the tendon. Tear gap distance, stiffness, and regional strains of the supraspinatus tendon were calculated. Results: The tear gap distance of large cable tears (median gap distance, 5.2 mm) was significantly greater than that of large crescent tears (median gap distance, 1.3 mm) (p = 0.002), the stiffness of tendons with a small (p = 0.002) or large (p = 0.002) cable tear was significantly greater than that of tendons with equivalently sized crescent tears, and regional strains across the supraspinatus were significantly increased in magnitude and altered in distribution by tears involving the anterior insertion of the rotator cuff cable. Conclusions: These findings support our hypothesis that the rotator cuff cable, which is in the most anterior 8 to 12 mm of the supraspinatus tendon immediately posterior to the bicipital groove, is the primary load-bearing structure within the supraspinatus for force transmission to the proximal part of the humerus. Conversely, in the presence of an intact rotator cuff cable, the rotator cuff crescent insertion is relatively stress-shielded and plays a significantly lesser role in supraspinatus force transmission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available