4.6 Article

Alterations of oxidative phosphorylation in meningiomas and peripheral nerve sheath tumors

Journal

NEURO-ONCOLOGY
Volume 18, Issue 2, Pages 184-194

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/neuonc/nov105

Keywords

meningioma; neurofibroma; oxidative phosphorylation; respiratory chain deficiency; schwannoma

Funding

  1. Salzburg Cancer Foundation, Vereinigung zur Forderung der padiatrischen Forschung und Fortbildung Salzburg
  2. Children's Cancer Foundation Salzburg
  3. Austrian Research Promotion Agency [822782/THERAPEP]

Ask authors/readers for more resources

Changes in the mode of aerobic energy production are observed in many solid tumors, though the kinds of changes differ among tumor types. We investigated mitochondrial energy metabolism in meningiomas and peripheral nerve sheath tumors, taking into consideration the histologic heterogeneity of these tumors. Oxidative phosphorylation (OXPHOS) complexes and porin (a marker for mitochondrial mass) were analyzed by immunohistochemical staining of meningiomas (n = 76) and peripheral nerve sheath tumors (schwannomas: n = 10; neurofibromas: n = 4). The enzymatic activities of OXPHOS complexes and citrate synthase were determined by spectrophotometric measurement. Western blot analysis of OXPHOS complexes, porin, and mitochondrial transcription factor A was performed. Furthermore, mitochondrial DNA copy number was determined. The tumors differed with regard to mitochondrial energy metabolism. Low levels of a subset of OXPHOS complexes were frequently observed in World Health Organization grade I meningiomas (percent of cases with a reduction; complex I: 63%; complex II: 67%; complex IV: 56%) and schwannomas (complex III: 40%, complex IV: 100%), whereas in neurofibromas a general reduction of all complexes was observed. In contrast, expression of complexes III and V was similar to that in normal brain tissue in the majority of tumors. Mitochondrial mass was comparable or higher in all tumors compared with normal brain tissue, whereas mitochondrial DNA copy number was reduced. The reduction of OXPHOS complexes in meningiomas and peripheral nerve sheath tumors has potential therapeutic implications, since respiratory chain-deficient tumor cells might be selectively starved by inhibitors of glycolysis or by ketogenic diet.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available