4.5 Article

Modulating and modeling aggregation of cell-seeded microcarriers in stirred culture system for macrotissue engineering

Journal

JOURNAL OF BIOTECHNOLOGY
Volume 150, Issue 3, Pages 438-446

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2010.09.953

Keywords

Microcarriers; Macrotissue engineering; Aggregation behavior; Bioreactor

Funding

  1. National Science Foundation of China (NSFC) [20776044]
  2. Fundamental Research Funds for the Central Universities
  3. National Special Fund for State Key Laboratory of Bioreactor Engineering [2060204]
  4. Shanghai Natural Science Foundation [10ZR1407100]

Ask authors/readers for more resources

A recently developed protocol. microtissue assembly holds great promise to address the issue of limited mass transfer within engineered large tissue replacements (macrotissues), wherein small building blocks (microtissues) are prepared and then assembled into macrotissues. Previous studies suggested that aggregation behavior of microcarrier-based microtissues were very important for macrotissue engineering. However, a systematic study on the aggregation behavior of microtissues is still missing. In this study, to examine the aggregation behavior of microtissues, effects of key operation parameters in dynamic culture including cell seeding density, microcarrier concentration. L-ascorbic acid 2-phosphate (V-c) and agitating speed were investigated. The aggregation process could be divided into three phases (i.e., lag, growth and stable). Aggregation efficiency (S) was found to be modulated by cell seeding density, microcarrier concentration, addition of V-c and agitating speed. A mathematical model correlating the operation parameters with Sat different phases of aggregation was developed and experimentally proved to be able to predict S with varied operation parameters. In the end, a cylindrical macrotissue (diameter x height: 2.0 cm x 0.8 cm) with fairly good integrity and cellularity and uniform cell distribution was successfully engineered through perfusion assembling microtissues with controlled S under selected culture conditions. Our study showed that aggregation of microtissues could be precisely modulated, which would definitely facilitate engineering macrotissues with high quality. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available