4.5 Article

Large-scale production and homogenous purification of long chain polysialic acids from E-coli K1

Journal

JOURNAL OF BIOTECHNOLOGY
Volume 135, Issue 2, Pages 202-209

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2008.03.012

Keywords

polysialic acid; Escherichia coli K1; large-scale purification; bioidentical material; tissue engineering

Ask authors/readers for more resources

The study of new biomaterials is the objective of many current research projects in biotechnological medicine. A promising scaffold material for the application in tissue engineering or other biomedical applications is polysialic acid (polySia), a homopolymer of alpha 2,8-linked sialic acid residues, which represents a posttranslational modification of the neural cell adhesion molecule and occurs in all vertebrate species. Some neuroinvasive bacteria like, e.g. Escherichia coli K1 (E. coli K1) use polySia as capsular polysaccharide. In this latter case long polySia chains with a degree of polymerization of > 200 are linked to lipid anchors. Since in vertebrates no polySia degrading enzymes exist, the molecule has a long half-life in the organism, but degradation can be induced by the use of endosialidases, bacteriophage-derived enzymes with pronounced specificity for polySia. In this work a biotechnological process for the production of bacterial polysialic acid is presented. The process includes the development of a multiple fed-batch cultivation of the E. coli Kt strain and a complete downstream strategy of polySia. A controlled feed of substrate at low concentrations resulted in an increase of the carbon yield (C-product/C-substrate) from 2.2 to 6.6%. The downstream process was optimized towards purification of long polySia chains. Using a series of adjusted precipitation steps an almost complete depletion of contaminating proteins was achieved. The whole process yielded 1-2 g polySia from a 10-l bacterial culture with a purity of 95-99%. Further product analysis demonstrated maximum chain length of > 130 for the final product. (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available