4.6 Article

Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

Journal

NEURAL REGENERATION RESEARCH
Volume 10, Issue 8, Pages 1332-1337

Publisher

WOLTERS KLUWER MEDKNOW PUBLICATIONS
DOI: 10.4103/1673-5374.162769

Keywords

nerve regeneration; peripheral nerve injury; sciatic nerve; microencapsulation; olfactory ensheathing cells; P2X2/3 receptor; neuropathic pain; dorsal root ganglion; sciatic chronic constriction injury; cell transplantation; NSFC grant; neural regeneration

Funding

  1. National Natural Science Foundation of China [81260190]
  2. Natural Science Foundation of Jiangxi Province of China [20132BAB205023]
  3. Science and Technology Research Program of Department of Education of Jiangxi Province in China [GJJ13159]
  4. Science and Technology Program of Department of Health of Jiangxi Province [20132019]

Ask authors/readers for more resources

Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs) remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L 4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L 4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available