4.4 Article

Production improvement of antifungal, antitrypanosomal nucleoside sinefungin by rpoB mutation and optimization of resting cell system of Streptomyces incarnatus NRRL 8089

Journal

JOURNAL OF BIOSCIENCE AND BIOENGINEERING
Volume 109, Issue 5, Pages 459-465

Publisher

SOC BIOSCIENCE BIOENGINEERING JAPAN
DOI: 10.1016/j.jbiosc.2009.10.017

Keywords

Streptomyces incarnatus; Sinefungin; rpoB gene; Secondary metabolism; Rifampicin-resistance

Funding

  1. Grants-in-Aid for Scientific Research [22380055] Funding Source: KAKEN

Ask authors/readers for more resources

Sinefungin, a nucleoside antibiotic with potent antifungal, antiviral, and anti-trypanosome activities, has been a target for production enhancement in the past decades through medium optimization and strain improvement. For the purpose of introducing a more rational approach, we induced rpoB mutation in the producer strain, Streptomyces incarnatus NRRL 8089, by optimized UV-irradiation, and a resulting rifampicin-resistant strain rif-400 increased the sinefungin production by 7-fold. The growth and melanin production were obviously accelerated in the rifampicin-resistant high-producer mutant, while the morphological differentiation such as aerial mycelia and spiked-spore formation was retained. Molecular cloning and DNA sequencing identified a single mutation A1340G in the rpoB gene, which encodes the beta-subunit of RNA polymerase, and the resulting amino acid substitution Asp447Gly corresponded to one of mutations that reportedly allowed the transcriptional up-regulation of actinorhodin production in S. coelicolor A3(2). Sinefungin production was further enhanced by resting cell system using the rpoB mutant strain in the presence of 10 mM L-Arg. D-Arg or L-ornithine did not enhance the sinefungin production, and >50 mM urea strongly suppressed the nucleoside antibiotic production, supporting the proposed biosynthetic mechanism by which urea is liberated from the guanidino-group-bearing intermediate that is produced by enzymatic condensation of L-Arg and ATP. (C) 2009, The Society for Biotechnology, Japan. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available