4.6 Article

Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging

Journal

JOURNAL OF BIOPHOTONICS
Volume 4, Issue 7-8, Pages 565-576

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jbio.201000117

Keywords

hyperspectral imaging; diabetic foot ulcer; tissue oximetry; medical screening technology; wound care; spectroscopy

Funding

  1. National Institute of Diabetes and Digestive and Kidney Diseases [R42-DK069871]

Ask authors/readers for more resources

This study combines non-invasive hyperspectral imaging with an experimentally validated skin optical model and inverse algorithm to monitor diabetic feet of two representative patients. It aims to observe temporal changes in local epidermal thickness and oxyhemoglobin concentration and to gain insight into the progression of foot ulcer formation and healing. Foot ulceration is a debilitating comorbidity of diabetes that may result in loss of mobility and amputation. Inflammation and necrosis preempt ulceration and can result in changes in the skin prior to ulceration and during ulcer healing that affect oxygen delivery and consumption. Previous studies estimated oxyhemoglobin and deoxyhemoglobin concentrations around pre-ulcerative and ulcer sites on the diabetic foot using commercially available hyperspectral imaging systems. These measurements were successfully used to detect tissue at risk of ulceration and predict the healing potential of ulcers. The present study shows epidermal thickening and decrease in oxyhemoglobin concentration can also be detected prior to ulceration at pre-ulcerative sites. The algorithm was also able to observe reduction in the epidermal thickness combined with an increase in oxyhemoglobin concentration around the ulcer as it healed and closed. This methodology can be used for early prediction of diabetic foot ulceration in a clinical setting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available