4.6 Article Proceedings Paper

RMieS-EMSC correction for infrared spectra of biological cells: Extension using full Mie theory and GPU computing

Journal

JOURNAL OF BIOPHOTONICS
Volume 3, Issue 8-9, Pages 609-620

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jbio.201000036

Keywords

FTIR; single cells; cell nucleus; infrared microspectroscopy; anomalous dispersion artefact; signal correction; EMSC; Mie scattering; resonant Mie scattering

Ask authors/readers for more resources

In the field of biomedical infrared spectroscopy it is often desirable to obtain spectra at the cellular level. Samples consisting of isolated single biological cells are particularly unsuited to such analysis since cells are strong scatterers of infrared radiation. Thus measured spectra consist of an absorption component often highly distorted by scattering effects. It is now known that the predominant contribution to the scattering is Resonant Mic Scattering (RMieS) and recently we have shown that this can be corrected for, using an iterative algorithm based on Extended Multiplicative Signal Correction (EMSC) and a Mie approximation formula. Here we present an iterative algorithm that applies full Mie scattering theory. In order to avoid noise accumulation in the iterative algorithm a curve-fitting step is implemented on the new reference spectrum. The new algorithm increases the computational time when run on an equivalent processor. Therefore parallel processing by a Graphics Processing Unit (GPU) was employed to [GRAPHICS] reduce computation time. The optimised RMieS-EMSC algorithm is applied to an IR spectroscopy data set of cultured single isolated prostate cancer (PC-3) cells, where it is shown that spectral distortions from RMieS are removed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available