4.7 Article

Structure based virtual screening, 3D-QSAR, molecular dynamics and ADMET studies for selection of natural inhibitors against structural and non-structural targets of Chikungunya

Journal

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
Volume 37, Issue 12, Pages 3150-3161

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2018.1509732

Keywords

chikungunya; molecular docking; molecular dynamics; natural ligands; QSAR; receptors

Ask authors/readers for more resources

The transmission of mosquito-borne Chikungunya virus (CHIKV) has large epidemics worldwide. Till date, there are neither anti-viral drugs nor vaccines available for the treatment of Chikungunya. Accumulated evidences suggest that some natural compounds i.e., Epigallocatechin gallate, Harringtonine, Apigenin, Chrysin, Silybin, etc. have the capability to inhibit CHIKV replication in vitro. Natural compounds are known to possess less or no side effects. Therefore, natural compound in its purified or crude extracts form could be the preeminent and safe mode of therapies for Chikungunya. Wet lab screening and identification of natural compounds against Chikungunya targets is a time consuming and expensive exercise. In the present study, we used in silico techniques like receptor-ligand docking, Molecular dynamic (MD), Three Dimensional Quantitative Structure Activity Relation (3D-QSAR) and ADME properties to screen out potential compounds. Aim of the study is to identify potential lead/s from natural sources using in silico techniques that can be developed as a drug like molecule against Chikungunya infection and replication. Three softwares were used for molecular docking studies. Potential ligands selected by docking studies were subsequently subjected 3D-QSAR studies to predict biological activity. Based on docking scores and pIC(50) value, potential anti-Chikungunya compounds were identified. Best docked receptor-ligands were also subjected to MD for more accurate estimation. Lipinski's rule and ADME studies of the identified compounds were also studied to assess their drug likeness properties. Results of in silico findings, led to identification of few best fit compounds of natural origin against targets of Chikungunya virus which may lead to discovery of new drugs for Chikungunya. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available