4.7 Article

Complex disruption effect of natural polyphenols on Bcl-2-Bax: molecular dynamics simulation and essential dynamics study

Journal

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
Volume 33, Issue 5, Pages 1094-1106

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2014.931823

Keywords

obatoclax; taxifolin; Bcl-2-Bax complex; molecular dynamics simulation; quercetin

Funding

  1. Council of Scientific and Industrial Research (CSIR), India

Ask authors/readers for more resources

Apoptosis (programmed cell death) is a process by which cells died after completing physiological function or after a severe genetic damage. Apoptosis is mainly regulated by the Bcl-2 family of proteins. Anti apoptotic protein Bcl-2 prevents the Bax activation/oligomerization to form heterodimer which is responsible for release of the cytochrome c from mitochondria to the cytosol in response to death signal. Quercetin and taxifolin (natural polyphenols) efficiently bound to hydrophobic groove of Bcl-2 and altered the structure by inducing conformational changes. Taxifolin was found more efficient when compared to quercetin in terms of interaction energy and collapse of hydrophobic groove. Taxifolin and quercetin were found to dissociate the Bcl-2-Bax complex during 12 ns MD simulation. The effect of taxifolin and quercetin was, further validated by the MD simulation of ligand-unbound Bcl-2-Bax which showed stability during the simulation. Obatoclax (an inhibitor of Bcl-2) had no significant dissociation effect on Bcl-2-Bax during simulation which favored the previous experimental results and disruption effect of taxifolin and quercetin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available