4.7 Article

Phylogenetic Analysis and Selection Pressures of 5-HT Receptors in Human and Non-human Primates: Receptor of an Ancient Neurotransmitter

Journal

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
Volume 27, Issue 5, Pages 581-598

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2010.10508573

Keywords

5-hydroxytryptamine; Serotonin; 5-HT receptors; Psychiatric disorders; Phylogenetic analysis; Evolution; Ka/Ks ratio; Selection pressures; Negative or purifying selection

Funding

  1. Department of Biotechnology (DBT), Government of India, New Delhi

Ask authors/readers for more resources

Neurotransmitter serotonin (5-hydroxytryptainine, 5-HT) an ancient neurotransmitter, involved in several neurophysiological and behavioral functions, acts by interacting with multiple receptors (5-HT1-5-HT7). Alterations in serotonergic signalling have also been implicated in various psychiatric disorders. The availability of the genome data of nonhuman primates permits comparative analysis of human 5-HT receptors with sequences of non-human primates to understand evolutionary divergence. We compared and analyzed serotonergic receptor sequences from human and non-human primates. Phylogenetic analysis by Maximum Likelihood (ML) method classified human and primate 5-HT receptors into six unique clusters. There was considerable conservation of 5-HT receptor sequences between human and non-human primates: however, a greater diversity at the sub-group level was observed. Compared to the other subgroups, larger multiplicity and expansion was seen within the 5-HT4 receptor subtype in both human and non-human primates. Analysis of non-synonymous and synonymous substitution ratios (Ka/Ks ratio) using the Nei-Gojobori method suggests that 5-HT receptor sequences have undergone negative (purifying) selection over the course of evolution in human, chimpanzee and rhesus monkey. Abnormal human and non-human primate psychopathalogy and behavior, in the context of these variations is discussed. Analysis of these 5-HT receptors in other species will help understand the molecular evolution of 5-HT receptors, and its possible influence on complex behaviors, and psychiatric disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available