4.7 Article

Glycine input induces the synaptic facilitation in salamander rod photoreceptors

Journal

JOURNAL OF BIOMEDICAL SCIENCE
Volume 15, Issue 6, Pages 743-754

Publisher

BIOMED CENTRAL LTD
DOI: 10.1007/s11373-008-9263-x

Keywords

Interplexiform cells; Cl(-) transporters; Glycinergic synapses; Retinas

Funding

  1. NEI NIH HHS [EY14161] Funding Source: Medline

Ask authors/readers for more resources

Glycinergic synapses in photoreceptors are made by centrifugal feedback neurons in the network, but the function of the synapses is largely unknown. Here we report that glycinergic input enhances photoreceptor synapses in amphibian retinas. Using specific antibodies against a glycine transporter (GlyT2) and glycine receptor beta subunit, we identified the morphology of glycinergic input in photoreceptor terminals. Electrophysiological recordings indicated that 10 mu M glycine depolarized rods and activated voltage-gated Ca(2+) channels in the neurons. The effects facilitated glutamate vesicle release in photoreceptors, meanwhile increased the spontaneous excitatory postsynaptic currents in Off-bipolar cells. Endogenous glycine feedback also enhanced glutamate transmission in photoreceptors. Additionally, inhibition of a Cl(-) uptake transporter NKCC1 with bumetanid effectively eliminated glycine-evoked a weak depolarization in rods, suggesting that NKCC1 maintains a high Cl(-) level in rods, which causes to depolarize in responding to glycine input. This study reveals a new function of glycine in retinal synaptic transmission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available